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Abstract
Using the ultrasonic pulse-echo technique and a newly developed method to
treat the data, all the elastic compliances of α-quartz have been obtained as
a function of hydrostatic pressure up to 1 GPa with great accuracy. Fifteen
independent measurements were performed in five directions of high symmetry
(X , Y , Z , Y ′ and Z ′). The pressure dependence of the six second-order elastic
and two piezoelectric constants were deduced. The pressure derivatives of
c14 and c44 are positive, whereas that of c66 is negative, in contradiction to
previously published results. Under ambient conditions, the linear and bulk
moduli Ba0 = 103.4(0.5) GPa, Bc0 = 137.0(0.5) GPa and B0 = 37.5(0.2) GPa
calculated from our determination of the elastic tensor are in good agreement
with the published values. However, we find a clear discrepancy with published
values for the pressure derivative of the bulk modulus B ′ = 4.7(0.5). From
these results, the Born stability criteria have been calculated as a function of
pressure and compared with previous results. Their behavior can help to explain
the structural instability of α-quartz at around 18 GPa.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

SiO2 is one of the most abundant materials in the lithosphere. It exists in several crystalline
structures. Among them α-quartz is the stable one at ambient conditions. Because of
this abundance and of the many possible applications using its mechanical, piezoelectrical,
optical and chemical properties, it is one of the most studied compounds of the last 25
years [1–3]. Its crystal structure is well established [4] and has been thoroughly investigated
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as a function of temperature [5, 6] and pressure [7–11]. At ambient temperature, α-quartz
remains stable up to approximately 18 GPa. At higher pressure, several experimental results
show a gradual amorphization, producing heterogeneous samples of coexisting crystalline
and amorphous phases [8, 9]. In spite of the large number of theoretical [12–19] and
experimental [8–11, 20–24] papers, the process of pressure-induced amorphization is not
well understood. Several conflicting suggestions have been made to explain the mechanism
of this transformation. Murashov [23] suggests that the phase transition at 20 GPa is
connected with the formation of a layered phase resembling the high-pressure phase of GaPO4.
Alternating layers with an ordered distribution of cross linking bonds can be responsible for
the appearance of signs of quartz superstructure in the experimental diffraction patterns of
the compressed crystal. Kingma et al [8] show the existence of a metastable crystal–crystal
transformation occurring prior to or during amorphization. Some authors propose that the
structural instability might be correlated with the behavior under stress of a particular elastic
modulus, i.e. amorphization would be a consequence of a mechanical instability [14] that can
be observed through the variation of the Born stability criterion [25]. This criterion expresses
the fact that any mechanical strain must increase the total mechanical energy of a system at
equilibrium. Concerning this criterion, it seems to be necessary to emphasize that in crystals
belonging to the 32, 3m and 3m trigonal classes, the Born criterion gives rise to only two
conditions [26]

B1 = (c11 + c12)c33 − 2c13
2

= 2((c11 − c66)c33 − c13
2) > 0 (1a)

B2 = (c11 − c12)c44 − 2c14
2

= 2(c66c44 − c14
2) > 0. (1b)

In hexagonal crystals, c14 = 0, so B2 splits into two conditions: c44 > 0 and c66 > 0. The
condition c66 > 0 often written as c11 −|c12| > 0 has no meaning in trigonal crystals. This last
condition is called ‘B1’ in the papers dealing with quartz, the correct B1 (equation (1a)) and B2

(equation (1b)) are denoted B2 and B3 in the literature, respectively.
The first criterion B1 (equation (1a)) expresses that the sample volume cannot collapse

upon compression as can be seen in the expression for the bulk and linear moduli.

B0 = c33(c11 + c12) − 2c2
13

c11 + c12 + 2c33 − 4c13

= B1

c11 + c12 + 2c33 − 4c13
(2a)

Ba0 = c33(c11 + c12) − 2c2
13

c33 − c13
= B1

c33 − c13
(2b)

Bc0 = c33(c11 + c12) − 2c2
13

c11 + c12 − 2c13
= B1

c11 + c12 − 2c13
. (2c)

No acoustic mode can produce the strain required by this criterion. On the contrary, B2

(equation (1b)) is associated with two different eigenvalues corresponding to different acoustic
modes [27, 28]. A decrease of the B2 value under compression denotes the existence of a
mechanical instability correlated with the presence of a soft acoustic shear mode in the phonon
spectrum at the � point of the Brillouin zone (‘rigidity catastrophe’). Of course, any instability
is predicted to occur at pressures larger than the amorphization pressure of α-SiO2, which is
quite common in first-order phase transitions somehow driven by (second-order-like) elastic
or vibrational instabilities. Binggeli et al [13, 16] predict an elastic instability associated with
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decreasing acoustic velocities (B2 criterion). From their Brillouin spectroscopy study at high
pressure, Gregoryanz et al [24] propose that this B2 type instability is driven by the softening
of c44 with pressure. In contrast, Tse et al [14] predict a mechanical instability (B1 criterion)
with a steep decrease of c12, c14, c13, c23 and c33, this last modulus being the dominant factor.
Chaplot et al [15] have found that the amorphization transition is initiated by a soft optic phonon
at the Brillouin zone boundary rather than by a transverse acoustic mode near the zone center,
the instability of the acoustic mode at 22 GPa being related to the anomaly of the Born criterion
B1. Watson and Parker [17] propose a dynamical instability process in which the Born criteria
are not involved. In their free energy calculations, de Boer et al [18] observe that the crystal is
relatively weak in the a direction, which favors an instability in the [110] direction, leading to a
violation of the B2 criterion. Finally, Choudhury et al [3] propose an amorphization transition
related to the B2 criterion. There is hence a considerable confusion concerning the mechanism
of the amorphization process.

Although the pressure range required to clarify the amorphization process is still beyond
reach for the ultrasonic technique, it is nevertheless clear [24, 29, 30] that uncertainties and
contradictions in the pressure dependence of the elastic moduli driving the amorphization
transition require new precise measurements of the elastic properties of α-quartz as a function
of pressure.

The purpose of this paper is to present experimental results, obtained by ultrasonic travel
time measurements under hydrostatic pressure on single crystalline α-quartz up to 1 GPa at
ambient temperature. In order to obtain reliable values for all the elastic moduli, we used
a newly developed self-consistent numerical method [31], taking advantage of a redundant
number of measurements of the travel time of the acoustic waves. By fitting simultaneously
all the measured data, we are able to determine all components of the elastic compliance
tensor and the piezoelectric contributions, from which the linear and volumic compressibilities
are deduced, without any prerequisite. A special effort was made to eliminate the errors
traditionally associated with pulse-echo overlap measurements. The treatment of the signal of
the echoes has been performed with special care [32], enabling a highly accurate determination
of the ultrasonic waves’ transit time.

2. Experimental procedure

Two parallelepipedic samples were cut from the same single crystalline α-SiO2 natural ingot
of high purity. Their density (ρ = 2648.5 kg m−3) at 1 bar and 298 K was found to be in
agreement with the published value [1]. These two samples were oriented by x-ray Laüe
diffraction. The X , Y , Z axes of the first parallelepiped correspond to the a, b∗ and c crystalline
axes. The X , Y ′, Z ′ axes of the second one are obtained by a 45◦ rotation of the Y , Z
axes around the X axis. The perpendicularity and the parallelism between the faces of both
samples were determined with a precision of a quarter of a degree and 1 μm respectively. The
dimensions of the samples were 7.543, 7.800 and 7.682 mm in the X , Y and Z directions
respectively for the first sample and 7.125, 7.095, 8.269 mm in the X , Y ′ and Z ′ directions for
the second one.

The ultrasonic system was a classical pulser receiver MATEC TB1000 setup. It sends
a signal of adjustable frequency to a 4 mm diameter copper electrode in contact with the
surface of the transducer to provide the excitation field. The same transducer is used for both
sending and receiving the ultrasonic pulses. For ambient pressure experiments, we used 5 MHz
ceramic transducers for longitudinal and transverse waves and for high hydrostatic pressure
experiments, 5 and 10 MHz LiNbO3 transducers with a diameter of 6 mm (Boston Piezo
Inc. Optic). The transducer is bonded to the sample using a thin uniform acoustic coupling
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(SWC of Sofranel France). The high-pressure setup to measure the elastic properties of crystals
was described in Hubert [32].

Hydrostatic pressure up to about 1 GPa was applied in a piston-cylinder Basset hydraulic
press (P2) connected to a ‘B18’ pressure2 cell by a capillary tube. The pressure transmitting
fluid was 99% pure pentane that remains fluid and hence produces hydrostatic pressures up to
1.2 GPa [33]. The pressure was measured using a manganin guage, whose resistance varies
linearly with pressure p(R) = k(R − R0), where R0 = 120.035 � and k = 0.332 06 GPa �−1.
The ultrasonic transit time was measured as a function of pressure using the ultrasonic pulse-
echo overlap technique. The sound velocity is given by 2d(p)/t (p) where d(p) is the length
of the sample and t (p) the transit time, both at pressure p. There is a difference between
the transit times measured at ambient pressure in air and in the pressure transmitting medium.
This difference can be explained by the change in frequency (5–10 MHz) and in diameter (8–
5 mm) of the transducer between the ambient and high-pressure measurements. We did correct
the results to take into account this effect. The transit times were measured both during the
upstroke and the downstroke, in the five propagation directions mentioned previously, and for
all the polarizations.

In a piezoelectric material the Christoffel equation of motion may be expressed as

ρv2ui =
(

ci jkl + ek ji e jkl

εs
jkn j nk

)
n j nkul, (3)

where ci jkl , ek ji and εs
jk are respectively the elastic compliances, the piezoelectric moduli and

the dielectric constant upon constant strain. The solutions of this eigensystem give the velocities
v and the polarizations u of the acoustic modes propagating along the direction n.

α-quartz is a piezoelectric compound which crystallizes in the trigonal symmetry (space
group P3121), therefore it has six independent elastic moduli, two piezoelectric and two
dielectric constants. In the high symmetry directions X , Y , Z , Y ′ and Z ′, the eigenvalues
of equation (3) are shown in table 1. The various configurations are numbered from 1 to 15,
and these numbers will be used throughout this paper. From the table, it is seen that only two
elastic constants can be directly derived from the experimental data i.e. c33 and c44 (longitudinal
and transverse modes in the Z direction, numbered as 7 and 8) and that the piezoelectric moduli
appear only in the description of the waves polarized in the X direction.

The ‘classical’ way of determining the elastic tensor is to make as many measurements
as unknown independent values (eight here). Assuming � is the standard error on the
determination of c33 or c44 from experimental travel time values in the Z direction (modes
7 and 8), the uncertainty on c11 obtained from the travel time values of the quasilongitudinal
and quasitransverse waves propagating in the Y direction (modes 4 and 5) would be at least 3�

(even if mode 1 is chosen and if ε
η

11 is approximated by ετ
11), 6� for c14, and so forth. Moreover

any mistake even made on only one experimental travel time determination will affect all the
elastic moduli values. Obviously, any substitution method used to extract elastic coefficients
from these equations would lead to a low precision result and the data consistency could not
be checked. Consequently, the only way to prevent the error propagation in solving all these
equations is to simultaneously determine all the elastic constants.

In order to determine the elastic moduli with the maximum precision and reliability,
the transit times were measured in 15 configurations (five propagation directions and three

2 It is a Marval 18 steel high-pressure cell. Its outer dimensions are 90 mm × 90 mm × 140 mm. Its function is to
generate the hydrostatic pressure on the sample, using liquid pentane as a pressure transmitting medium (fluid up to
1.5 GPa, i.e. 0.5 GPa above the highest reached pressure). The maximum sample size with ultrasonic arrangement is
roughly 2.5 cm−3. It was constructed by the Departement des Hautes Pressions de l’Université Pierre et Marie Curie,
Paris VI, France.
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Table 1. Effective second-order elastic moduli ci j of α-quartz. Y ′ and Z ′ designate the propagation
directions in the (Y, Z) plane at an angle of 45◦ to the X axis. eiα is the piezoelectric tensor and
εs

i j is the effective dielectric tensor upon constant stress. n propagation direction; u polarization;
longitudinal and quasilongitudinal (L and QL); transverse and quasitransverse (T and QT); fast and
slow transverse (FT and ST). εs

33 = εT
33; εs

11 = εT
11 − (e2

11c44 + e2
14c66 −2e11e14c14)/(c66c44 − c2

14).

Nr n u Mode ρv2

1 X X L c11 + e2
11

εs
11

2 X Z FT
[
c66 + c44 +

√
(c66 − c44)2 + 4c2

14

]/
2

3 X Y ST
[
c66 + c44 −

√
(c66 − c44)2 + 4c2

14

]/
2

4 Y Y QL
[
c44 + c11 +

√
(c44 − c11)2 + 4c2

14

]/
2

5 Y Z QT
[
c44 + c11 −

√
(c44 − c11)2 + 4c2

14

]/
2

6 Y X T c66 + e2
11

εs
11

7 Z Z L c33

8, 9 Z X, Y T c44

10 Y ′ Y ′ QL
[
c11 + c33 + 2c44 − 2c14 + √

(c11 − c33 − 2c14)2 + 4(c44 + c13 − c14)2
]/

4

11 Y ′ Z ′ QT
[
c11 + c33 + 2c44 − 2c14 − √

(c11 − c33 − 2c14)2 + 4(c44 + c13 − c14)2
]/

4

12 Y ′ X T
[
(c66 + c44 + 2c14) + (e11+e14)2

(εs
11+εs

33)

]/
2

13 Z ′ Z ′ QL
[
c11 + c33 + 2c44 + 2c14 + √

(c11 − c33 + 2c14)2 + 4(c44 + c13 − c14)2
]/

4

14 Z ′ Y ′ QT
[
c11 + c33 + 2c44 − 2c14 − √

(c11 − c33 − 2c14)
2 + 4(c44 + c13 − c14)

2
]/

4

15 Z ′ X T
[
(c66 + c44 − 2c14) + (e11−e14)2

(εs
11+εs

33)

]/
2

polarizations) giving redundant results which have been simultaneously fitted to the equations
presented in table 1 for every pressure.

Both non-linear least squares refinement by χ2 minimization and reverse Monte Carlo
methods have been chosen to fit the equations shown in table 1 to experimental data.
Computing methods have been extracted from ‘Numerical Recipes’ [34]. χ2 minimization
is realized with a classical Levenberg–Marquardt algorithm [35, 36]. The ‘mrqmin’ routine
used in the Levenberg–Marquardt algorithm requires knowledge of a one variable function
f (ci j , eiα, ετ

i j )(x) and its derivatives versus all the fitted parameters ci j , eiα, ετ
i j . In our case

the x variable represents the mode number and corresponds to one of the equations appearing
in table 1. The routine is very flexible and all parameters can be constrained or adjusted so
that the influence of each parameter on the final result and on the fit quality can be tested.
The code has been extensively and successfully tested [31] on results obtained on various
samples of different point group symmetry but to be sure to escape from local minima, a
more complex simulated annealing algorithm has also been introduced. This algorithm is
based on a Monte Carlo method and is fully described in [37, 38]. In order to compare
the results obtained by these two algorithms, the same input function described above for
the Levenberg–Marquardt algorithm has been used. The quality of the Monte Carlo fitting
procedure depends on the random number generator, the temperature step size, the number of
iterations and the sampling scheme used for the parameters so that it has been used only to
avoid local minima.

5



J. Phys.: Condens. Matter 19 (2007) 436228 E Calderon et al

In this process, in order to avoid non-linear effects in the minimized function, experimental
travel times have been converted into ρv2 units using ρv2 = 4ρd2/t2 = Cn

u and the known (or
calculated by the previous iteration, see below) length and density of the sample. The term Cn

u
corresponds to the combinations of the elastic moduli presented in table 1, where n corresponds
to the propagation direction and u to the polarization (longitudinal and quasilongitudinal (L and
QL); transverse and quasitransverse (T and QT); fast and slow transverse (FT and ST)). With
uncertainties on time: δt � 5 ns and on length: δd � 2 μm, the absolute typical error on
‘experimental’ Cn

u is less than 1% but the relative error is smaller as it can be checked on the
dispersion of the experimental results. Finally equations appearing in table 1 have been fitted
to the experimental ρv2 by explicitly minimizing the quantity

χ2 =
∑

i

1

σ 2
i

( f (ci j , eiα, ετ
i j )(xi) − ρv2

i )
2, (4)

where σi is the uncertainty corresponding to the ‘i th’ experimental measurement ‘ρv2
i ’.

Supposing length and density are known at a given pressure p all the elastic moduli can
be deduced by ultrasonic measurements and therefore the volumic and linear compressibilities
that are functions of the elastic constants only. Using these values, a first approximation of the
length and of the density can be computed at a pressure p+δp for a small pressure increase δp.
These values are then used to deduce the first approximation elastic moduli at the new pressure,
obtained from the measurement of the transit time at p + δp as described in the preceding
paragraph. At this step, the density and length are respectively under- and overestimated, while
the elastic moduli are underestimated. The values of the latter are then used as starting points
in an iterative process, until convergence is reached. Since the variation of the sound velocity
is mainly due to that of the elastic moduli, their dependence on length and density being only
second order, this process is robust.

This method applied to deduce the elastic moduli from the transit time measurements in
crystals of any symmetry is described in detail in a recent paper by Gauthier et al [31]. It
does not require any x-ray measurement for the pressure-induced length and density variation,
provided one can neglect the difference between adiabatic and isothermal moduli. This
approximation is justified in the case of α-quartz where the difference is less than 1% [39].
Consequently, all components of the elastic compliance tensor including the piezoelectric
contributions, from which the linear and volumic compressibilities are deduced, have been
obtained from direct travel time measurements under pressure without any prerequisite.

3. Results and discussion

As explained in the preceding section, we measured the transit times t as a function of pressure
up to 1 GPa in the five high-symmetry directions X , Y , Z , Y ′, Z ′, for the three polarizations.
The relative variation with pressure of the 14 independent measurements (transverse modes are
degenerate in the Z direction) is shown in figures 1(a)–(c) where the �t = t (p) − t (p = 0)

have been normalized with respect to the transit times at ambient pressure.
Figure 1 summarizes the raw results obtained in the present study. The �t may be split in

three groups showing common properties. Figure 1(a) gathers the propagation directions and
polarizations where the propagation time decreases linearly with pressure. Figure 1(b) shows
the pressure dependence of the transit time in the X direction for the fast transverse mode
(mode 2), in the Y direction for the transverse mode (mode 6) and in the Z ′ direction for the
transverse mode (mode 15). The velocity of all these three modes decreases when the pressure
is increased. This behavior has already been observed by McSkimin for modes 2 and 6. Mode
15 has never been investigated before. Finally, in figure 1(c) are gathered transit times with large
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(a)

(b)

(c)

Figure 1. The relatives changes in transit times as a function of pressure of the 15 acoustic modes up
to 1 GPa for α-SiO2 at 300 K. Symbols are experimental data points: circles (longitudinal waves),
squares and diamonds (fast and slow transverse waves). The numbers correspond to table 1. The
transit times increase with pressure for modes 2, 6 and 15 while the transit times for longitudinal
waves in all directions (except Y ) and the transverse waves in the Z direction behave non-linearly
with pressure. (Colors online correspond to different directions, X red, Y green, Z blue, Y ′ black
and Z ′ orange.)

non-linearities: mode 1 corresponds to the longitudinal mode propagating in the X direction,
mode 7 is the longitudinal mode in Z direction, modes 8 and 9 are the degenerate transverse
modes propagating in the Z direction, modes 10 and 13 are the quasilongitudinal modes
propagating in the Y ′ and Z ′ directions. Such a low-pressure non-linearity has already been

7
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Table 2. Second-order elastic constants (in GPa) and their pressure derivatives at ambient pressure
and temperature.

Ref. c11 c12 c13 c14 c33 c44 c66

This work 87.2(0.2) 7.20(0.5) 11.9(0.2) −17.8(0.2) 105.5(0.2) 58.7(0.2) 40.0(0.2)
McSkimin [29] 86.80 7.04 11.91 −18.04 105.75 58.20 39.88
Wang [30] 84.87 5.35 12.15 17.68 105.55 57.81 39.76
Gregoryanz [24] 92.9 7.7 13.8 −17.6 89.6 57.7 42.6
Choudhury [3] 78.1 16.0 13.9 −15.7 110.8 55.2 31.05
de Boer [18] 87.78 13.82 9.18 −18.20 107.20 55.12 36.98

∂c11/∂p ∂c12/∂p ∂c13/∂p ∂c14/∂p ∂c33/∂p ∂c44/∂p ∂c66/∂p

This work 3.8(0.1) 5.7(0.2) 4.0(0.1) 1.2(0.1) 7.6(0.1) 1.8(0.1) −1.1(0.1)

McSkimin [29] 3.28 8.66 5.97 1.93 10.84 2.66 −2.69
Wang [30] 3.81 9.80 3.34 −3.96 9.51 1.84 −2.99
Gregoryanz [24] 5.24 0.14 9.21 0.73 17.2 −1.62 2.55
de Boer [18] 1.65 5.54 4.63 1.73 11.50 −1.08 −1.95

observed in compounds of the berlinite family, isoelectronic to α-quartz [40–42]. Moreover, it
is by no way in contradiction with the results of McSkimin [29]. The narrow pressure range over
which this author made his measurements (30000 psi � 0.2 GPa) did not allow the observation
of a non-linear behavior of the elastic properties.

In order to have an easier comparison between our results and those of the literature,
especially those obtained by Brillouin scattering, it is more convenient to convert the transit
times into elastic moduli. This has been done using the method exposed in the preceding
section. As seen in table 1, there are four piezoelectric modes, (1, 6, 12 and 15). Unfortunately,
modes 1 and 6 involve the same piezoelectric parameter (e2

11/ε
s
11). In other words, four

quantities e11, e14, εT
11 and εT

33 have to be determined from only three equations. Since the
pressure dependence of the dielectric constants of quartz is not known, we have supposed as a
first approximation, that they do not depend on pressure and are fixed to the ambient condition
values, i.e. (εT

11/ε0) = 4.52 and (εT
33/ε0) = 4.64 [43].

The values of the elastic constants at ambient conditions and their pressure dependence
deduced from our measurements are reported in figure 2. They are summarized in table 2
and compared with those obtained by ultrasonic [29, 30], Brillouin scattering [24] and
calculations [3, 18]. There is a relatively good agreement between all the ultrasonic results.
Only the sign of c14 and the value of c12 obtained by Wang et al [30] do not agree with the
other results. It is highly probable that the explanation for this discrepancy lies in a confusion
between Y ′ and Z ′ axes, confusion that also affects all other results. In the same table, the
pressure derivatives of all the elastic constants are compared with the published results. There
is again a good agreement between the ultrasonic measurements, except for the derivative of c14

obtained by Wang [30] for the already mentioned reason. The small discrepancies compared to
McSkimin et al [29] may arise from the fact that they did not measure the pressure dependence
of modes 12, 13, 14 and 15 under pressure and consequently their precision in the determination
of the variation of c13 (obtained with no redundancy) and even c33 is rather low and may
influence the other pressure derivatives.

On the other hand, there is typically a difference from 1 to 15% between the ultrasonic and
the Brillouin scattering results. The difference is particularly large for c11, c33 and c13. The
discrepancy is much larger for the pressure derivatives of the elastic constants. In particular,
c12 is found to be pressure independent and the derivative of c44 has a negative sign in this last
experiment. We suspect that an error occurred during the extraction of the ci j from the Brillouin

8
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Figure 2. Pressure dependence of the elastic constants ci j (black circles) compared with those of
McSkimin et al [29] ((blue) line with diamonds), Wang et al [30] ((green) line with squares) and
Gregoryanz et al [24] ((red) line with hexagons). The large discrepancies between the results of
Gregoryanz [24] and the other authors (large difference in the values, and in the sign of ∂c66/∂p,
∂c44/∂p) may be due to an error occurred during the extraction of the ci j from the Brillouin shifts
measurements, in such a way that c44 and c66 were inverted. For Wang et al’s results [30] the
difference in sign of c14 and of ∂c14/∂p probably lies in a confusion between the Y ′ and Z ′ axis.

shift measurements, in such a way that c44 and c66 were inverted, with all the associated
consequences on the determination of the other elastic constants. This has consequences on
the hypothesis made by these authors on the pressure-induced destabilization process of α-
quartz; hence the destabilization process that they proposed via the softening of c44 cannot be
considered any more.

The method we used to deduce the elastic moduli from the travel time enabled us also
to determine the piezoelectric constants, provided one remembers that the pressure variations
of the dielectric constants upon constant stress have been neglected. The results are shown in
table 3. We have found a non-linear variation of both piezoelectric parameters, but much more
pronounced for e14 than for e11. Obviously these determinations suffer from our hypothesis
on the pressure variation of the dielectric tensor εT but the general tendencies may be used

9



J. Phys.: Condens. Matter 19 (2007) 436228 E Calderon et al

Table 3. Values of the dielectric and piezoelectric constants at room pressure and temperature.
eiα in C m−2 and εi j in F m−1, p in GPa. e1 = e2

11/ε
s
11, e2 = (e11 + e14)

2/2(εs
11 + εs

33),
e3 = (e11 − e14)

2/2(εs
11 + εs

33). The asterisks denote the values calculated by us using ∂e11/∂p =
(∂e11/∂η1)/Ba .

Ref. e11 e14 ∂e11/∂p ∂e14/∂p e1 e2 e3 ∂e1/∂p ∂e2/∂p ∂e3/∂p

This work 0.17 −0.04 −0.03 0.3 0.75 0.28 0.11 −0.2 −0.8 0.6
McSkimin [29] 0.171 −0.041 — — 0.77 — — 0.005 — —
Wang [30] — — — — — — — 2.32 — −0.37
Graham [44] 0.1711 −0.0406 −0.026∗ — — — — — — —

with confidence. These results demonstrate the continuous decrease under pressure of the
piezoelectric effect associated with e11, in agreement with the data obtained by Graham [44]
through shock wave experiments. From his result ∂e11/∂η11 = −2.64 C m−2 where η1 is
the strain tensor we get ∂e11/∂p = −0.026 C m−2 GPa−1 (using ∂e11/∂p = (∂e11/∂η1)/Ba)
which is close to our value −0.03 ± 0.01 C m−2 GPa−1. To our knowledge we present here the
first results on the pressure variation of e14, results which should be confirmed [45]. According
to our results the piezoelectric coupling coefficient decreases from 9.2% to 7.2% at 1 GPa
in the X direction and from 13.5% to 11.0% in the Z direction. At the same pressure, the
piezoelectric effect nearly vanishes in the Z ′ direction whereas the piezoelectric coupling
coefficient increases from 5.8% to 11.2% in the Y ′ direction. This complete determination
of the variation of the piezoelectric effect under pressure enables a very accurate determination
of the elastic constants.

From all these results it appears that only the shear elastic stiffness modulus c66 of α-quartz
shows unusual pressure dependence with a negative value for ∂c66/∂p, behavior also found in
the berlinite AlPO4 [40]. As seen in the introduction, a pressure-induced softening of an elastic
modulus may indicate incipient lattice instability because it corresponds to a reduction of the
crystal stiffness for the associated acoustic-phonon mode but c66 (and c44) does not correspond
in a trigonal system to any particular mechanical instability.

Figure 3 shows the variation of the linear and bulk moduli Ba, Bc and B0 versus pressure.
Their ambient pressure values and their derivatives are summarized in table 4 together with
published results. The values obtained for these moduli at ambient pressure are in good
agreement with the values of the literature [7, 29, 30], even with values computed by us from x-
ray data [11] except for Gregoryanz’s results for Bc [24]. On the contrary, there is a difference
in the value of ∂ B0/∂p, which is smaller than the published values. This difference of 25%
can be explained by the difference in the determination method for the elastic constants, and
in the pressure range over which the measurements were performed. The values at ambient
conditions are in general easy to check through several experiments. However, as explained in
the experimental section, the standard way to determine the elastic constants as a function of
pressure is to perform just as many measurements as unknown parameters. In such a method,
there is a propagation of the errors, which increases the inaccuracy of the results. Using
the method presented in [31] gives roughly the same precision on all the elastic moduli, and
increases therefore the accuracy of the bulk modulus pressure derivative to few per cent. As
already mentioned, McSkimin et al [29] did not make any measurement in the Z ′ direction and
only two in the Y ′ direction under pressure, which explains the difference in B ′

c. In conclusion,
it can be clearly seen in figure 3 that the bulk and the linear moduli all increase with pressure
but that their pressure derivatives are not constants.

From the pressure dependence of the elastic moduli, one can also determine the Born
criteria, from which the stability of the crystalline structure may be discussed. The criteria
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Figure 3. Variation of the linear and bulk modulus of α-SiO2 at 300 K versus pressure. The dotted
lines have been computed by us from x-ray data using Murnaghan’s equation of state. The Bc values
by Gregoryanz [24] are never within the error bars.

Table 4. Linear moduli, bulk modulus and their pressure derivatives for α-SiO2 and the pressure
domain used for their determination. The asterisks denote the values calculated by us.

Ref. This work
McSkimin
[29]

Wang
[30]

Gregoryanz
[24]

Kim
[7]

Levien
[11]

Choudhury
[3]

de Boer
[18]

Technique US US US Brillouin X-ray X-ray Calcul. Calcul.
pmax (GPa) ≈1 ≈0.2 ≈0.2 20 ≈15 ≈6 38 24
B0 (GPa) 37.5(0.2) 37.4 36.5 36.16 38.7 38 38.6∗ 38.4∗
Ba (GPa) 103.3(0.5) 102.7∗ 98.8∗ 112.2∗ — 105∗ 103.6∗ 109.4∗
Bc (GPa) 137.0(0.5) 137.7∗ 140.0∗ 118.9∗ — 137∗ 151.4∗ 128.8∗
∂B0/∂p 4.7(0.5) 6.3 5.6 6.5∗ 5.2 6.2 — 4.7∗
∂Ba/∂p 12.4(0.5) 15.9∗ 16.3∗ 10.2∗ — 12.2∗ — 10∗
∂Bc/∂p 18.5(0.5) 28.3∗ 17.6∗ 43.8∗ — 31.4∗ — 25.6∗

are given in equations (1a) and (1b). B1 is related to the bulk and linear moduli, and B2 =
2(c66c44 − c2

14) > 0 is a combination of moduli related to transverse acoustic phonons [26–28].
In figure 4, we have plotted the pressure dependence of both criteria, measured up to 1 GPa,
together with the results obtained by other authors. The dashed lines correspond to a linear
extrapolation of our low-pressure data. The main finding of these results is the strong non-
linearity of the B1 criterion pressure dependence whereas B2 behaves in a very smooth way.

The precision of our results enables us to extrapolate the Born criteria to high
pressure, using a quadratic form. Within this extremely crude extrapolation, B2 increases
continuously as expected and B1 presents a maximum in disagreement with previously
published data [3, 13, 16, 18, 24]. It is clear that the pressure range explored in the present
experiments is much too narrow to give a sufficient accuracy to this extrapolation, but it shows
nevertheless that an accurate determination of the elastic moduli and their pressure dependence
is sufficient to give a correct tendency. The fact that the destabilization process in quartz is
related to the B1 Born criterion, and not to B2, means that the driving mechanism is not a shear
stress, but is a volumic process. This is in agreement with recent ab initio calculations by
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Figure 4. Variation of the Born criterion of α-SiO2 at 300 K versus pressure. Dashed lines
correspond to a linear extrapolation of low-pressure data.

Baroni et al [46]. Measurements using the Paris–Edinburgh press are under way to expand the
explored pressure range and reach the point where B1 is expected to present a maximum.

4. Conclusion

Using the ultrasonic pulse-echo technique and a newly developed method to treat the data, all
the elastic moduli of α-quartz have been obtained as a function of pressure up to 1 GPa with
a high accuracy. The pressure derivatives of c14 and c44 are positive and only that of c66 is
negative. Therefore the elastic constants and their pressure derivatives behave like those of the
berlinite AlPO4, but α-quartz is stiffer than berlinite. The deduced values at ambient conditions
of the linear and bulk moduli are in good agreement with published values. However, we find
a clear discrepancy with the published values for their pressure derivative.

The measured piezoelectric coefficients are consistent with those reported previously at
zero pressure and their pressure dependence has been determined up to 1 GPa. It should
be emphasized that it is the first complete determination of the pressure dependence of the
piezoelectricity, to the best of our knowledge. The pressure derivative of e14 is positive whereas
that of e11 is negative so the piezoelectric effect associated with e11 decreases with pressure
whereas the effect associated with e14 increases.

Finally the two stability conditions (Born criteria) B1 and B2 have been calculated from
our determination of the elastic tensor. It is shown that the B1 condition presents a large non-
linearity from which it may be concluded, from a very crude extrapolation of the criteria at high
pressure, that the pressure-induced amorphization is closely related to this ‘volumic’ criterion,
and not to an acoustic soft mode behavior as has often been proposed. Nevertheless, our
understanding of the thermodynamic factors that influence the amorphization of quartz still
remains incomplete.
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